Тригонометрические формулы.

<u>o</u>	Название	Прямая	Обратная
	Основное тригонометрическое тождество (тригонометрическая единица)	$\sin^2 \alpha + \cos^2 \alpha = 1$	$1 = \sin^2 \alpha + \cos^2 \alpha$
,	Определение тангенса	$tg\alpha = \frac{\sin \alpha}{\cos \alpha}$ $\left(\alpha \neq \frac{\Pi}{2} + \Pi \kappa\right)$, κ – целое число	$\frac{\sin\alpha}{\cos\alpha} = tg\alpha$
3	Определение котангенса	$ctg\alpha = \frac{\cos\alpha}{\sin\alpha} (\alpha \neq \Pi\kappa), \kappa$ – целое число	$\frac{\cos\alpha}{\sin\alpha} = ctg\alpha$
4	Связь тангенса и котангенса	$tg\alpha \bullet ctg\alpha = 1, \left(\alpha \neq \frac{\Pi \kappa}{2}\right), \kappa - $ целое число	
5.	Связь тангенса и косинуса.	$1+tg^2\alpha=\frac{1}{\cos^2\alpha}\bigg(\alpha eq \frac{\varPi}{2}+\varPi\kappa\bigg),$ $\kappa-$ целое число	$\frac{1}{\cos^2 \alpha} = 1 + tg^2 \alpha$
6	Связь котангенса и синуса	$1+ctg^2\alpha=\frac{1}{\sin^2\alpha}\left(\alpha\neq\Pi\kappa\right)$, κ – целое число	$\frac{1}{\sin^2 \alpha} = 1 + ctg^2 \alpha$
	2. Формулы сложения.		
1	Косинус суммы двух чисел	$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$	$\cos \alpha \cos \beta - \sin \alpha \sin \beta = \cos(\alpha + \beta)$
2	Косинус разности двух чисел	$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$	$\cos \alpha \cos \beta + \sin \alpha \sin \beta = \cos(\alpha - \beta)$
3	Синус суммы двух чисел	$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$	$\sin \alpha \cos \beta + \sin \beta \cos \alpha = \sin(\alpha + \beta)$
4	Синус разности двух чисел	$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \sin \beta \cos \alpha$	$\sin \alpha \cos \beta - \sin \beta \cos \alpha = \sin(\alpha - \beta)$
5	Тангенс суммы двух чисел	$tg(\alpha + \beta) = \frac{tg\alpha + tg\beta}{1 - tg\alpha \cdot tg\beta}$	$\frac{tg\alpha + tg\beta}{1 - tg\alpha \bullet tg\beta} = tg(\alpha + \beta)$
Ó	Тангенс разности двух чисел	$tg(\alpha - \beta) = \frac{tg\alpha - tg\beta}{1 + tg\alpha \cdot tg\beta}$	$\frac{tg\alpha - tg\beta}{1 + tg\alpha \bullet tg\beta} = tg(\alpha - \beta)$

1	Косинус двойного аргумента	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$	$\cos^2 \alpha - \sin^2 \alpha = \cos 2\alpha$
2	Косинус двойного аргумента	$\cos 2\alpha = 2\cos^2 \alpha - 1$	$2\cos^2\alpha - 1 = \cos 2\alpha$
3	Косинус двойного аргумента	$\cos 2\alpha = 1 - 2\sin^2 \alpha$	$1 - 2\sin^2\alpha = \cos 2\alpha$
4	Косинус двойного аргумента как разность квадратов	$\cos 2\alpha = (\cos \alpha - \sin \alpha)(\cos \alpha + \sin \alpha)$	$(\cos\alpha - \sin\alpha)(\cos\alpha + \sin\alpha) = \cos 2\alpha$
5	Синус двойного аргумента	$\sin 2\alpha = 2\sin \alpha \cos \alpha$	$2\sin\alpha\cos\alpha = \sin2\alpha$
6	Неполный синус двойного аргумента	$\sin\alpha\cos\alpha = \frac{\sin 2\alpha}{2}$	
7.	Тангенс двойного аргумента	$tg2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}$	$\frac{2tg\alpha}{1-tg^2\alpha} = tg2\alpha$
8.	Котангенс двойного аргумента	$ctg2\alpha = \frac{ctg^2\alpha - 1}{2ctg\alpha}$	$\frac{ctg^2\alpha - 1}{2ctg\alpha} = ctg2\alpha$
9	Косинус тройного аргумента	$\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$	$4\cos^3\alpha - 3\cos\alpha = \cos 3\alpha$
10	Синус тройного аргумента	$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$	$3\sin\alpha - 4\sin^3\alpha = \sin 3\alpha$
	4 Формулы понижения степени		
1.	Понижение степени для косинуса (квадрат)	$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$	$\frac{1+\cos 2\alpha}{2} = \cos^2 \alpha$
2.	Понижение степени для косинуса (куб)	$\cos^3 \alpha = \frac{\cos 3\alpha + 3\cos \alpha}{4}$	
3.	Понижение степени для синуса (квадрат)	$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$	$\frac{1-\cos 2\alpha}{2} = \sin^2 \alpha$
4	Понижение степени для синуса (куб)	$\sin^3 \alpha = \frac{3\sin \alpha - \sin 3\alpha}{4}$	
	5. Формулы универсальной подстановки.		

1.	Выражение синуса аргумента t через тангенс вдвое меньшего аргумента	$\sin t = \frac{2tg\frac{t}{2}}{1 + tg^2\frac{t}{2}}$	
2.	Выражение косинуса аргумента t через тангенс вдвое меньшего аргумента	$\cos t = \frac{1 - tg^2 \frac{t}{2}}{1 + tg^2 \frac{t}{2}}$	
3	Выражение тангенса аргумента t через тангенс вдвое меньшего аргумента	$tgt = \frac{2tg\frac{t}{2}}{1 - tg^2\frac{t}{2}}$	
4	Выражение котангенса аргумента t через тангенс вдвое меньшего аргумента	$ctgt \frac{1 - tg^2 \frac{t}{2}}{2tg \frac{t}{2}}$	
	6. Формулы половинного аргумента		
1.	Косинус половинного аргумента	$\left \cos\frac{\alpha}{2}\right = \sqrt{\frac{1+\cos\alpha}{2}}$, знак корня зависит от	
		того, в какой четверти лежит число $\frac{\alpha}{2}$.	
2.	Синус половинного аргумента	$\left \sin\frac{\alpha}{2}\right = \sqrt{\frac{1-\cos\alpha}{2}}$, знак корня зависит от того,	
		в какой четверти лежит число $\frac{\alpha}{2}$.	
3.	Тангенс половинного аргумента	$\left tg \frac{\alpha}{2} \right = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$, знак корня зависит от того, в	
		какой четверти лежит число $\frac{\alpha}{2}$.	

4.	Дополнительные формулы тангенса половинного аргумента	$tg\frac{\alpha}{2} = \frac{\sin\alpha}{1 + \cos\alpha} = \frac{1 - \cos\alpha}{\sin\alpha}$	
5.	Котангенс половинного аргумента	$\left ctg\frac{\alpha}{2}\right = \sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}}$, знак корня зависит от того,	
		в какой четверти лежит число $\frac{\alpha}{2}$.	
6.	Дополнительные формулы котангенса половинного аргумента	$ctg\frac{\alpha}{2} = \frac{1 + \cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1 - \cos\alpha}$	
7.]	Преобразование тригонометрических	функций в произведение	
1.	Сумма синусов двух чисел	$\sin t + \sin s = 2\sin\frac{t+s}{2}\cos\frac{t-s}{2}$	
2	Разность синусов двух чисел	$\sin t - \sin s = 2\cos\frac{t+s}{2}\sin\frac{t-s}{2}$	
3	Сумма косинусов двух чисел	$\cos t + \cos s = 2\cos\frac{t+s}{2}\cos\frac{t-s}{2}$	
4	Разность косинусов двух чисел	$\cos t - \cos s = -2\sin\frac{t+s}{2}\sin\frac{t-s}{2}$	
5	Сумма тангенсов двух чисел	$tgt + tgs = \frac{\sin(t+s)}{\cos t \cos s}$	
6.	Разность тангенсов двух чисел	$tgt - tgs = \frac{\sin(t - s)}{\cos t \cos s}$	
7	Сумма котангенсов двух чисел	$ctgt + ctgs = \frac{\sin(t+s)}{\sin t \sin s}$	
8	Разность котангенсов двух чисел	$ctgt - ctgs = \frac{\sin(s - t)}{\sin t \sin s}$	
	8. Преобразование произведения тригонометрических функций в сумму.		
1	Произведение синусов двух разных аргументов	$\sin t \sin s = \frac{1}{2} \left(\cos(t - s) - \cos(t + s) \right)$	

2	Произведение косинусов двух разных аргументов	$\cos t \cos s = \frac{1}{2} \left(\cos(t+s) + \cos(s-t) \right)$	
3.	Произведение разноименных функций	$\sin t \cos s = \frac{1}{2} \left(\sin(t+s) + \sin(t-s) \right)$	